p-group, metabelian, nilpotent (class 2), monomial, rational
Aliases: C25⋊2C22, C23.579C24, C24.387C23, C22.3532+ (1+4), (C2×D4)⋊16D4, C2.43(D42), (C2×C42)⋊30C22, C23.205(C2×D4), C23.10D4⋊76C2, C2.40(C23⋊3D4), (C22×C4).177C23, C22.388(C22×D4), C24.3C22⋊74C2, C2.C42⋊36C22, C2.4(C24⋊C22), (C22×D4).218C22, (C2×C4).87(C2×D4), (C2×C4⋊C4)⋊32C22, (C2×C22≀C2)⋊15C2, (C2×C22⋊C4)⋊29C22, SmallGroup(128,1411)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Subgroups: 1268 in 500 conjugacy classes, 112 normal (6 characteristic)
C1, C2, C2 [×6], C2 [×12], C4 [×12], C22, C22 [×6], C22 [×92], C2×C4 [×6], C2×C4 [×24], D4 [×36], C23, C23 [×12], C23 [×92], C42, C22⋊C4 [×36], C4⋊C4 [×3], C22×C4 [×9], C2×D4 [×12], C2×D4 [×36], C24 [×6], C24 [×20], C2.C42 [×2], C2×C42, C2×C22⋊C4 [×18], C2×C4⋊C4 [×3], C22≀C2 [×24], C22×D4 [×9], C25 [×2], C24.3C22 [×3], C23.10D4 [×6], C2×C22≀C2 [×6], C25⋊C22
Quotients:
C1, C2 [×15], C22 [×35], D4 [×12], C23 [×15], C2×D4 [×18], C24, C22×D4 [×3], 2+ (1+4) [×4], C23⋊3D4 [×3], D42 [×3], C24⋊C22, C25⋊C22
Generators and relations
G = < a,b,c,d,e,f,g | a2=b2=c2=d2=e2=f2=g2=1, ab=ba, ac=ca, faf=ad=da, ae=ea, gag=acd, gbg=bc=cb, bd=db, fbf=be=eb, cd=dc, ce=ec, cf=fc, cg=gc, de=ed, df=fd, dg=gd, ef=fe, eg=ge, fg=gf >
(1 2)(3 4)(5 6)(7 8)(9 10)(11 12)(13 14)(15 16)(17 18)(19 20)(21 22)(23 24)(25 26)(27 28)(29 30)(31 32)
(1 15)(2 16)(3 30)(4 29)(5 27)(6 28)(7 17)(8 18)(9 20)(10 19)(11 21)(12 22)(13 31)(14 32)(23 26)(24 25)
(1 31)(2 32)(3 8)(4 7)(5 19)(6 20)(9 28)(10 27)(11 23)(12 24)(13 15)(14 16)(17 29)(18 30)(21 26)(22 25)
(1 27)(2 28)(3 22)(4 21)(5 15)(6 16)(7 26)(8 25)(9 32)(10 31)(11 29)(12 30)(13 19)(14 20)(17 23)(18 24)
(1 30)(2 29)(3 15)(4 16)(5 22)(6 21)(7 14)(8 13)(9 23)(10 24)(11 28)(12 27)(17 32)(18 31)(19 25)(20 26)
(1 30)(2 11)(4 21)(6 16)(7 26)(9 17)(10 24)(12 27)(14 20)(18 31)(23 32)(28 29)
(1 24)(2 29)(3 5)(4 14)(6 26)(7 16)(8 19)(9 23)(10 30)(11 28)(12 31)(13 25)(15 22)(17 32)(18 27)(20 21)
G:=sub<Sym(32)| (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32), (1,15)(2,16)(3,30)(4,29)(5,27)(6,28)(7,17)(8,18)(9,20)(10,19)(11,21)(12,22)(13,31)(14,32)(23,26)(24,25), (1,31)(2,32)(3,8)(4,7)(5,19)(6,20)(9,28)(10,27)(11,23)(12,24)(13,15)(14,16)(17,29)(18,30)(21,26)(22,25), (1,27)(2,28)(3,22)(4,21)(5,15)(6,16)(7,26)(8,25)(9,32)(10,31)(11,29)(12,30)(13,19)(14,20)(17,23)(18,24), (1,30)(2,29)(3,15)(4,16)(5,22)(6,21)(7,14)(8,13)(9,23)(10,24)(11,28)(12,27)(17,32)(18,31)(19,25)(20,26), (1,30)(2,11)(4,21)(6,16)(7,26)(9,17)(10,24)(12,27)(14,20)(18,31)(23,32)(28,29), (1,24)(2,29)(3,5)(4,14)(6,26)(7,16)(8,19)(9,23)(10,30)(11,28)(12,31)(13,25)(15,22)(17,32)(18,27)(20,21)>;
G:=Group( (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32), (1,15)(2,16)(3,30)(4,29)(5,27)(6,28)(7,17)(8,18)(9,20)(10,19)(11,21)(12,22)(13,31)(14,32)(23,26)(24,25), (1,31)(2,32)(3,8)(4,7)(5,19)(6,20)(9,28)(10,27)(11,23)(12,24)(13,15)(14,16)(17,29)(18,30)(21,26)(22,25), (1,27)(2,28)(3,22)(4,21)(5,15)(6,16)(7,26)(8,25)(9,32)(10,31)(11,29)(12,30)(13,19)(14,20)(17,23)(18,24), (1,30)(2,29)(3,15)(4,16)(5,22)(6,21)(7,14)(8,13)(9,23)(10,24)(11,28)(12,27)(17,32)(18,31)(19,25)(20,26), (1,30)(2,11)(4,21)(6,16)(7,26)(9,17)(10,24)(12,27)(14,20)(18,31)(23,32)(28,29), (1,24)(2,29)(3,5)(4,14)(6,26)(7,16)(8,19)(9,23)(10,30)(11,28)(12,31)(13,25)(15,22)(17,32)(18,27)(20,21) );
G=PermutationGroup([(1,2),(3,4),(5,6),(7,8),(9,10),(11,12),(13,14),(15,16),(17,18),(19,20),(21,22),(23,24),(25,26),(27,28),(29,30),(31,32)], [(1,15),(2,16),(3,30),(4,29),(5,27),(6,28),(7,17),(8,18),(9,20),(10,19),(11,21),(12,22),(13,31),(14,32),(23,26),(24,25)], [(1,31),(2,32),(3,8),(4,7),(5,19),(6,20),(9,28),(10,27),(11,23),(12,24),(13,15),(14,16),(17,29),(18,30),(21,26),(22,25)], [(1,27),(2,28),(3,22),(4,21),(5,15),(6,16),(7,26),(8,25),(9,32),(10,31),(11,29),(12,30),(13,19),(14,20),(17,23),(18,24)], [(1,30),(2,29),(3,15),(4,16),(5,22),(6,21),(7,14),(8,13),(9,23),(10,24),(11,28),(12,27),(17,32),(18,31),(19,25),(20,26)], [(1,30),(2,11),(4,21),(6,16),(7,26),(9,17),(10,24),(12,27),(14,20),(18,31),(23,32),(28,29)], [(1,24),(2,29),(3,5),(4,14),(6,26),(7,16),(8,19),(9,23),(10,30),(11,28),(12,31),(13,25),(15,22),(17,32),(18,27),(20,21)])
Matrix representation ►G ⊆ GL6(ℤ)
0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | -1 | 0 | 0 | 0 |
0 | 0 | 0 | -1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | -1 |
0 | 0 | 0 | 0 | -1 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | -1 | 0 |
0 | 0 | 0 | 0 | 0 | -1 |
-1 | 0 | 0 | 0 | 0 | 0 |
0 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | -1 | 0 | 0 | 0 |
0 | 0 | 0 | -1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
-1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | -1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | -1 | 0 | 0 | 0 |
0 | 0 | 0 | -1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | -1 |
G:=sub<GL(6,Integers())| [0,1,0,0,0,0,1,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,-1,0,0,0,0,-1,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1],[-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[-1,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,-1] >;
32 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | ··· | 2S | 4A | ··· | 4F | 4G | ··· | 4L |
order | 1 | 2 | ··· | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
size | 1 | 1 | ··· | 1 | 4 | ··· | 4 | 4 | ··· | 4 | 8 | ··· | 8 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 2 | 4 |
type | + | + | + | + | + | + |
image | C1 | C2 | C2 | C2 | D4 | 2+ (1+4) |
kernel | C25⋊C22 | C24.3C22 | C23.10D4 | C2×C22≀C2 | C2×D4 | C22 |
# reps | 1 | 3 | 6 | 6 | 12 | 4 |
In GAP, Magma, Sage, TeX
C_2^5\rtimes C_2^2
% in TeX
G:=Group("C2^5:C2^2");
// GroupNames label
G:=SmallGroup(128,1411);
// by ID
G=gap.SmallGroup(128,1411);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,2,336,253,758,723,1571,346]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=d^2=e^2=f^2=g^2=1,a*b=b*a,a*c=c*a,f*a*f=a*d=d*a,a*e=e*a,g*a*g=a*c*d,g*b*g=b*c=c*b,b*d=d*b,f*b*f=b*e=e*b,c*d=d*c,c*e=e*c,c*f=f*c,c*g=g*c,d*e=e*d,d*f=f*d,d*g=g*d,e*f=f*e,e*g=g*e,f*g=g*f>;
// generators/relations